BaTiO₃ thin film prepared by coating-pyrolysis process on Nb-doped SrTiO₃ substrate

S. KIM, O.-Y. KWON

Department of Chemical Engineering, Yosu National University, Yosu 550-749, Korea

Epitaxial BaTiO₃ thin film was prepared on Nb-doped SrTiO₃ substrate by coating-pyrolysis process using a mixed solution of barium and titanium naphthenates. The amorphous film pyrolyzed at 470 °C was crystallized with high orientation after heat-treatment at 850 °C under low oxygen partial pressure. X-ray diffraction $\theta/2\theta$ and β scans indicated that the BaTiO₃ film was epitaxial relationship with Nb-doped SrTiO₃ substrate. The dielectric constant was approximately 230 at 10³ Hz and was monotonically decreased with increasing of frequency at room temperature. © *1999 Kluwer Academic Publishers*

1. Introduction

Perovskite BaTiO₃ thin films are of particular interest for electronic device applications due to their useful ferroelectric, dielectric and electro-optic properties [1]. These films are attractive for high capacitance integrated elements, dynamic random access memories (DRAM) and ferroelectric memories, etc. BaTiO₃ thin films were prepared by various fabricating methods such as metal-organic chemical vapor deposition (MOCVD) [2–4], radio-frequency sputtering [5-7], laser ablation [8], evaporation [9], laser deposition [10, 11], sol-gel [12, 13], metal-organic deposition (MOD) [14]. LaAlO₃ [2], MgO [3, 5, 10], Si wafer [4, 6, 13], SrTiO₃ [7], YBCO/LaAlO₃ [8], Pt/MgO [9], and MgO/GaAs [11] were used as substrates for BaTiO₃ thin films.

A chemical solution process such as coatingpyrolysis process and MOD using metal-organic compounds has the following distinct advantages. It is simple and inexpensive, and is easily applicable to substrate with any size and shape without requiring high vacuum. Recently, we have succeeded in preparing epitaxial BaTiO₃ thin films on SrTiO₃ and MgO substrates using metal-naphthenates [15, 16].

In this paper, we report on BaTiO₃ thin films prepared by coating-pyrolysis process. A mixed metalnaphthenate and Nb-doped SrTiO₃ were used as a precursor solution and a substrate, respectively. The orientation of film and epitaxy between BaTiO₃ film and Nb-doped SrTiO₃ substrate were examined by X-ray diffraction (XRD) $\theta/2\theta$ and β scans. The frequency and bias-voltage dependences of dielectric constant and dielectric loss were measured.

2. Experimental

BaTiO₃ thin film on Nb-doped SrTiO₃ substrate was prepared by similar methods reported in our previous paper [15, 16], which were described the preparation of the epitaxial BaTiO₃ thin films on SrTiO₃ and MgO substrates. In brief, the mixed solution of barium and titanium naphthenates was used as a precursor solution. The precursor solution was diluted in toluene to adjust the concentration (\sim 0.2 mmol/g) and viscosity for spin coating. The precursor solution was spin-coated on Nb-doped SrTiO₃ substrate at 2000 rpm for 5 s. The Nb concentration and electric resistivity of Nb-doped SrTiO₃ substrate were 0.05 at % and 0.01 Ω ·cm, respectively.

The thermogravimetric analysis of the precursor solution indicated that thermal decomposition of the mixed barium and titanium naphthenates to barium carbonate and titanium dioxide was completed at temperature range of 440 to 500 °C in air. Thus, the spin-coated film was pyrolyzed at 470 °C for 10 min in air to eliminate organic components. The pyrolyzed film was heattreated at 850 °C for 1 h under oxygen partial pressure of 2×10^{-4} atm. The thickness of the prepared film was measured to be 0.33 μ m by α -step method. The orientation of film and epitaxial relationship between BaTiO₃ thin film and Nb-doped SrTiO₃ substrate were examined by XRD $\theta/2\theta$ and β scans using Cu K_{α} radiation with graphite bent optical monochromator. The surface morphology of thin film was observed by scanning electron microscope (SEM). A silver dot of 1.0 mm diameter was evaporated on the BaTiO₃ thin film as an upper electrode. Dielectric constant and dielectric loss tan δ were measured by using an impedance analyzer in the frequency range from 10^3 to 10^6 Hz at room temperature. The dependences of the bias-voltage on the dielectric constant and dielectric loss were also measured.

3. Results and discussion

The film pyrolyzed at 470 °C in air was an amorphous by XRD $\theta/2\theta$ scan, similar to those on SrTiO₃ and MgO substrates [15, 16]. The amorphous pyrolyzed film was crystallized with high orientation after final heat-treatment at 850 °C for 1 h under oxygen partial pressure of 2 × 10⁻⁴ atm. Fig. 1 shows XRD $\theta/2\theta$ scan of BaTiO₃ film prepared on Nb-doped SrTiO₃ substrate. As it can be seen, only (*h*00) peaks of BaTiO₃ were revealed. Using the SrTiO₃ (200) peak as an internal

Figure 1 XRD pattern of BaTiO₃ thin film. (• indicates the XRD pattern of Nb-doped SrTiO₃ substrate.)

calibration standard, the lattice constant of BaTiO₃ film was determined to be 0.3998 nm, which is closer to *a*-axis lattice constant of bulk tetragonal BaTiO₃. This indicates that the BaTiO₃ film on Nb-doped SrTiO₃ substrate was oriented with *a*-axis orientation to substrate plane, which is consistent with the results of BaTiO₃ films on MgO substrates prepared by MOCVD [3] and pulse laser deposition [11]. The full width at half maximum (FWHM) of the rocking curve was measured to evaluate an in-plane alignment of BaTiO₃ film. The FWHMs of the rocking curves for BaTiO₃ (200) and SrTiO₃ (200) reflections were 0.32° and 0.12° , respectively. Such a narrow FWHM value of BaTiO₃ film indicates that the BaTiO₃ film was crystallized with high (100) orientation.

The epitaxial relationship between film and substrate was confirmed by XRD β scan of the BaTiO₃ (101) reflections as shown in Fig. 2. The four sharp peaks of BaTiO₃ (101) reflections were observed at every 90° and agreed with those of SrTiO₃ (101) reflections. The X-ray pole-figure measured at the tilted angle from 30 to 60°, not shown here, displayed the four sharp spots of BaTiO₃ (101) reflections at every 90°. The results of XRD β scan and pole-figure indicate that the BaTiO₃ film was a complete epitaxy with the Nb-doped SrTiO₃ substrate. The epitaxy is originated from the small lattice mismatch values between film and substrate. The substrate Nb-doped SrTiO₃ used in

Figure 2 XRD β scan of BaTiO₃ (101) reflection.

Figure 3 SEM morphology of BaTiO₃ thin film.

this study has a cubic perovskite structure with lattice constant of a = 0.3905 nm. The bulk BaTiO₃ with a same perovskite structure has a tetragonal phase having lattice constants of a = 0.3994 and c = 0.4038 nm at room temperature. Thus, the lattice mismatch values between tetragonal BaTiO₃ and cubic SrTiO₃ are -2.3 and -3.4% along *a*- and *c*-axis, respectively.

Fig. 3 shows the surface morphology of the BaTiO₃ thin film observed by SEM. The surface was consistent with round-shaped grains of diameters about 0.3 μ m. Some voids formed during the pyrolysis of metal naph-thenates were interspersed among grains. The morphology of film was similar to that of BaTiO₃ thin film prepared on SrTiO₃ substrate heat treated in air [15].

The frequency and bias-voltage dependences of the dielectric constant and dielectric loss tan δ were measured by using an impedance analyzer at room temperature. Fig. 4 shows the dielectric constant of the BaTiO₃ film measured in the frequency range of 10^3 to 10^6 Hz at applying voltage of 50 mV. The dielectric constant was monotonically decreased with the increasing of the

Figure 4 Frequency dependences of dielectric constant and dielectric loss.

Figure 5 Bias-voltage dependences of dielectric constant and dielectric loss.

frequency. Dielectric constants were about 230 at the frequency of 10³ Hz and 125 at 10⁶ Hz. The dielectric behavior of this film is similar to those of BaTiO₃ films prepared by sol-gel process on LaNiO₃-coated LaAlO₃ substrate [17] and by hydrothermal-electrochemical method on Ti substrate [18]. The dielectric loss $\tan \delta$ showed a range of 0.1-0.5 and had a maximum value of 0.5 at a frequency around 10^4 Hz. The frequency dependence of the dielectric loss was also observed in BaTiO₃ thin film prepared on Pt/MgO (100) substrate [19], which is might be due to a contact resistance of the electrodes [20] and still needs further study. The bias-voltage dependences of the dielectric constant and dielectric loss for the BaTiO₃ film at the frequency of 10^{6} Hz were measured from -9 to +9 V and back again as shown in Fig. 5. The bias-voltage dependence of the dielectric constant for the BaTiO₃ thin film with dielectric loss about 0.1 demonstrates the weak ferroelectric properties having small butterfly-type hysteresis.

4. Conclusion

Epitaxial BaTiO₃ thin film was prepared by coatingpyrolysis process on Nb-doped SrTiO₃ substrate. A mixed solution of barium and titanium naphthenates was used as a precursor solution. The amorphous film pyrolyzed at 470 °C was crystallized with high orientation after heat-treatment at 850 °C under low oxygen partial pressure. The results of X-ray diffraction indicated that the BaTiO₃ film had the lattice constant of 0.3998 nm and was epitaxial relationship with Nb-doped SrTiO₃ substrate. The dielectric constant was approximately 230 at 10^3 Hz and was monotonically decreased with increasing of frequency at room temperature.

References

- 1. A. M. GLASS, Science 235 (1987) 1003.
- C. S. CHERN, J. ZHAO, L. LUO, P. LU, Y. Q. LI, P. NORRIS, B. KEAR, F. COSANDEY, C. J. MAGGIORE, B. GALLOIS and B. J. WILKENS, *Appl. Phys. Lett.* 60 (1992) 1144.
- 3. D. L. KAISER, M. D. VAUDIN, L. D. ROTTER, Z. L. WANG, J. P. CLINE, C. S. HWANG, R. B. MARINENKO and J. G. GILLEN, *ibid.* 66 (1995) 2801.
- 4. Y. S. YOON, M. N. KANG, H. S. SHIN, S. S. YOM, T. W. KIM, J. Y. LEE, D. J. CHOI and S-S. BAEK, J. Appl. Phys. 73 (1993) 1547.
- 5. S. KIM, S. HISHITA, Y. M. KANG and S. BAIK, *ibid*. **78** (1995) 5604.
- J. W. JANG, S. J. JUNG, W. J. CHO, T. S. HAHN and S. S. CHOI, *ibid.* 81 (1997) 6322.
- 7. M. MATSUOKA, K. HOSHINO and K. ONO, *ibid*. **76** (1994) 1768.
- J. ZHANG, Z. CHEN, D. CUI, H. LU, N. JIANG and J. HAO, *Appl. Phys. Lett.* 66 (1995) 2069.
- 9. Y. YONEDA, H. KASATANI, H. TERAUCHI, Y. YANO, T. TERASHIMA and Y. BANDO, *J. Crystal Growth* **150** (1995) 1090.
- M. G. NORTON, K. P. B. CRACKNELL and C. B. CARTER, J. Amer. Ceram. Soc. 75 (1992) 1999.
- V. SRIKANT, E. J. TARSA, D. R. CLARKE and J. S. SPECK, J. Appl. Phys. 77 (1995) 1517.
- 12. M. KUWABARA, S. TAKAHASHIMA and T. KURODA, *Appl. Phys. Lett.* 62 (1992) 3372.
- 13. H. BAE and T. KO, J. Kor. Ceram. Soc. 31 (1994) 795.
- 14. W. O. BENOMAR, S. S. XUE, R. A. LESSARD and A. SINGH, *J. Mater. Res.* **9** (1994) 970.
- S. KIM, T. MANABE, I. YAMAGUCHI, T. KUMAGAI and S. MIZUTA, *ibid*. 12 (1997) 1141.
- 16. Idem., Thin Solid Films 310 (1997) 199.
- A. LI, C. GE, P. LU, D. WU, S. XIONG and N. MING, Appl. Phys. Lett. 70 (1997) 1616.
- 18. K. KAJIYOSHI, Y. SAKABE and M. YOSHIMURA, Jpn. J. Appl. Phys. 36 (1997) 1209.
- 19. S. KIM and S. HISHITA, J. Mater. Res. 12 (1997) 1152.
- 20. M. SAYER, V. KUMAR, D. BARROW, L. ZOU and D. AMM, in "Ferroelectric Thin Films II" (Mater. Res. Soc. Symp. Proc 243, Pittsburgh, 1992) p. 39.

Received 6 January and accepted 8 October 1998